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Quantum model of emission in a weakly non ideal plasma
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Abstract. We present, in this work a simple analytical expression of line emission in weakly non ideal
plasma using a simplified quantum model. This formalism allows to explain the variations of the line
widths with the density in a weakly non ideal plasma. We apply this model to plasma neutral helium lines
HeI 6678 Å and HeI 5876 Å and explain the non linearity of the line width.

PACS. 32.70.Jz Line shapes, widths, and shifts – 31.15.Lc Quasiparticle methods – 42.50.-p Quantum
optics

1 Introduction

Stark broadening of spectral lines is important for physi-
cal diagnostics and astrophysical modelling. In fact, it is
found to be a reliable tool for understanding the character-
istics of the plasma. This requires, in practice, a detailed
knowledge of line profile in the plasma. Collisions between
ions and electrons play an important role in Astrophysics
for the interpretation of line spectra and for the modelling
of the stellar interiors.

The diagnostic of a plasma rest on the knowledge of
the spectral profile. For a classic plasma, in a thermo-
dynamic equilibrium, where one supposes that collisions
between emitters and rapid particles of the plasma gives
a Lorentzian profile [1–6]. Slow charged particles, namely
ions, contribute by a quasistatic field: the ionic microfield,
whose distribution is presented in several works [7–10].
When the density of the plasma increase, N -particles in-
teractions effects appears; the middle becomes dense and
the state of the plasma become non ideal identified by the
non ideality factor Γ .

This non-ideality factor Γ is defined as the ratio of
the mean interaction potential energy between charged
particles U to their kinetic energy Ec (Γ = U/Ec = 2.26×
10−5N

1/3
e /T ) where Ne is in m−3 and T in K.

In the range of 0.001 � Γ ≤ 0.05 the plasma is very
weakly non-ideal, for 0.05 ≤ Γ ≤ 0.25 the plasma is
weakly non-ideal. When Γ varied between 0.25 and 0.5
the plasma is non-ideal and for Γ > 0.5, the plasma in
strongly non-ideal.

Plasma shielding effects due to electron and ion cor-
relations are not negligible in the physical conditions of
white dwarfs atmospheres, owing to their high density.
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They also play a role in the case of rather cool stars and
for atomic transitions which are quasi-degenerated. Elec-
tronic correlations (screening effects) are usually taken
into account by introducing a cutoff in the interaction
when the electron-atom distance exceeds the Debye ra-
dius RD. A more consistent treatment to describe collec-
tive effects is the Debye-Hückel potential: the two-particles
Coulomb field is shielded by the ensemble of the sur-
rounding electrons. This is a good approximation only
for high temperature and low density plasmas (weakly
non ideal plasmas). Several works study proprieties of
non-ideal plasma using semiclassical formalism with the
Coulomb cutoff potential [11,12] or with the ion sphere po-
tential [13]. These potentials, which can be written as the
Coulomb potential with two correcting terms, are widely
used in the literature [14,15].

In this paper, we investigate full quantum model based
on quasiparticles treatment to describe the electron ion in-
teraction in a non ideal plasma. The main aim of this work
is to present an expression of the spectral line profile when
the plasma is non ideal. We developed a quantum formal-
ism of the emission which take into account the interac-
tion between particles such that it becomes applicable to
a weakly non-ideal plasma. We give analytic expression of
the line width and explain the non linearity of the width
via the density in three experiments:
– experiment of Gauthier et al. [16] where Γ is between

0.081 and 0.096;
– experiment of El Bezzari [17] where Γ is close to 0.1,

theses two experimental measurements reports Stark
broadening of the HeI 21P−31D transition at 6678 Å;

– experiment of Büscher et al. [18] which report mea-
surements of Stark broadening of the HeI 23P−33D
transition at 5876 Å, where the non ideality factor is
0.037 ≤ Γ ≤ 0.045.
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2 Presentation of the model

We consider a plasma with ions and electrons in inter-
actions. This emitting system is equivalent to quasiparti-
cles formed by ions and electrons in interaction with pho-
tons. The quasiparticles model is applied in many fields
of physics as in semiconductors [19–21], in Bose-Einstein
condensation [22] and in the microfield distributions func-
tions [9,10].

The Hamiltonian of the system can be written in the
form:

H = Hqp + HF + Hint + Hnl (1)

where
Hqp = �ωqpb̂

+b̂ (2)

with b̂+ and b̂ the bosonic creation and annihilation oper-
ators of a quasiparticle, verifying the relation of commu-
tation [b̂, b̂+] = 1

HF = �ωF â+â. (3)

HF is the Hamiltonian of the photonic field, â+ and â
are the creation and annihilation operators of a photon
verifying the commutation relation [â, â+] = 1.

The Hamiltonian that describes the interaction be-
tween a quasiparticle and a photon can be written as

Hint = �g
(
â+b̂ + b̂+â

)
(4)

where g is the coupling constant.
ωqp et ωF are respectively proper frequencies of the

quasiparticle and the photon that we supposes in reso-
nance (ωqp = ωF = ω0).

The interaction Hamiltonian takes into account two
process that are:

– annihilation of a photon and creation of a quasipar-
ticle;

– annihilation of a quasiparticle and a creation of a
photon.

The non linear Hamiltonian which describes the interac-
tion between quasiparticles is:

Hnl = α�b̂+b̂+b̂b̂ (5)

where α is the interaction constant.
We take into account the interaction with the thermal

bath through a dissipative term γ/2.

3 Line profile

The profile of a line in a plasma is written as:

Î(ω) = TF
{
Ĉ(t)

}
=

∫ ∞

−∞
Ĉ(t)e−iωtdt (6)

where
Ĉ(t) =

〈
â+(0)â(t)

〉
(7)

is the correlation function. In interaction representation,
we take:

â = āe−iω0t, b̂ = be−iω0t. (8)

We transform the ā and ā+ operators respectively into

a = iā, a+ = −iā+. (9)

The commutation equation still: [a, a+] = 1, where a+ and
a can be considered as creation and annihilation operators.

For simplifications we define

C(t) =
〈
a+(t)a(0)

〉
, I(ω) = TF {C(t)} (10)

so
Ĉ(t) = C(t)eiω0t, Î(ω) = I(ω − ω0). (11)

In this case, the evolution operator a(t) can be de-
duced from the evolution equation of the density oper-
ator [23–26]:

dρ

dt
=

1
i�

[HI , ρ] +
γ

2
(
2aρa+ − a+aρ − ρa+a

)
+ γnth

(
aρa+ + a+ρa − a+aρ − ρa+a

)
(12)

where
HI = i�g(a+b − b+a) + �αb+b+bb (13)

and γ/2 takes into account all radiatives dissipations of the
plasma. nth is the average number of the thermal photons.

The Master equation, in interaction representation be-
comes:

dρ

dt
= g

[
a+b − b+a, ρ

] − iα
[
b+b+bb, ρ

]
+

γ

2
(
2aρa+ − a+aρ − ρa+a

)
+ γnth

(
aρa+ + a+ρa − a+aρ − ρa+a

)
. (14)

By writing that 〈a〉 = 〈a(t)〉 = tr (a(t)ρ(0)) where a(t) =
U+(t, 0)a(0)U(t, 0) and ρ(t) = U(t, 0)ρ(0)U+(t, 0) and
similarly for b; U(t, 0) represents the evolution operator.
We obtains then evolution equations for mean values a
and b in the interaction representation:

d

dt
〈a〉 = g 〈b〉 − γ

2 〈a〉
d

dt
〈b〉 = −g 〈a〉 − 2iαN 〈b〉

(15)

where we used 〈b+bb〉 ≈ 〈b+b〉 〈b〉 = N 〈b〉, N is the total
quasiparticle number.

The system has input fluctuations F in in the quasipar-
ticle mode due to interactions with external environment.

In this case, evolution equations of operators a and b
have the same forms as the preceding equations but with
input fluctuations

d

dt
b = −ga − 2iαNb

d

dt
a = gb − γ

2 a +
√

γF int
. (16)
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This last equation can be considered as a Langevin equa-
tion where input fluctuations

√
γF in are Langevin field

associated to the photons thermal bath.
F in represent fluctuations of the thermal bath [27,28]:〈

F in(t)
〉

= 0〈
F in(t)F in(t′)

〉
= 0〈

F in+(t)F in(t′)
〉

= nthδ(t − t′)〈
F in(t)F in+(t′)

〉
= (nth + 1)δ(t − t′). (17)

In the Fourier space, fluctuations verify:〈
F in [ω]F in [ω′]

〉
= 0〈

F in+ [ω]F in [ω′]
〉

= 2πnthδ(ω + ω′)〈
F in [ω]F in+ [ω′]

〉
= 2π(nth + 1)δ(ω + ω′). (18)

The Fourier transform of evolution equations of operators
a and b are: iωa [ω] = gb [ω] − γ

2
a [ω] +

√
γF in [ω]

iωb [ω] = −ga [ω] − 2iαNb [ω]
. (19)

The origin of the spectral frequency used is the transition
frequency ω0.

The evolution matrix defined by:

M [ω]

[
a [ω]

b [ω]

]
=

[√
γF in [ω]

0

]
(20)

is then:

M [ω] =
(

γ/2 + iω −g
g iω + 2iαN

)
. (21)

Resolution of the system gives

a [ω] =
√

γF in [ω] T [ω] (22)

where
T [ω] =

i (ω + 2αN)
g2 + i (ω + 2αN) (γ/2 + iω)

(23)

and we find that:

a+ [ω] =
√

γF in+ [ω]T + [ω] (24)

so〈
a+ [ω′] a [ω]

〉
= γT + [ω′] T [ω]

〈
F in+ [ω′] F in [ω]

〉
(25)

or 〈
a+ [ω′] a [ω]

〉
= 2πnthγT + [ω′] T [ω] δ (ω + ω′) .

On the other hand, we obtain from equation (10):〈
a+ [ω′] a [ω]

〉
= 2πI [ω] δ (ω + ω′) (26)

so that

nthγT + [ω′] T [ω] δ (ω + ω′) = I [ω] δ (ω + ω′) . (27)

The integration of this last equation over ω′ in the interval
[ω − δω, ω + δω] and the relation T + [ω] =

(
T [−ω]∗

)
gives

I [ω] = γnth |T [ω]|2 (28)

so

I [ω] =
γnth (ω + 2αN)2

(g2 − ω2 − 2αNω)2 +
(γ

2

)2

(ω + 2αN)2
(29)

=
γnth(

g2

ω + 2αN
− ω

)2

+
(γ

2

)2
(30)

which gives as line profile:

Î [ω] =
γnth(

g2

∆ω + 2αN
− ∆ω

)2

+
(γ

2

)2
(31)

where ∆ω = ω − ω0.
In absence of coupling (g = 0) and non linear interac-

tion (α = 0), we find the usual Lorentzian expression of
the profile for ideal plasmas.

For weakly non ideal plasmas, the values of the cou-
pling and the non linear interaction are weakly compared
to the dissipation of the system(

g2 �
(γ

2

)2

and (αN)2 �
(γ

2

)2
)

.

As we consider that the coupling between the photon and
the emitter (g being the coupling constant) is very weak
ahead the quasiparticle interactions αN which is self weak
ahead the dissipations γ/2 of the emitter, the width γ′/2
of the spectral profile is γ′/2 = ω2 − ω1where ω1 and ω2

are solutions of the following equation:(
g2

∆ω + 2αN
− ∆ω

)2

=
(γ

2

)2

(32)

so, we obtain the modified width γ′:

γ′ = γ +
(4g)2 − (2αN)2

γ
. (33)

For the N perturbers, the full width at half maximum
(FWHM) is then

w′ = Nγ′ = γ1N − γ2N
3 (34)

where

γ1 = γ +
16g2

γ
(35)

and

γ2 =
4α2

γ
. (36)
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Fig. 1. Stark width versus the electron density for the he-
lium line HeI 21P − 31D transition at 6678 Å. Experimental
data of Gauthier et al. [16]. The dashed line present the Griem
theory [1]. The solid curve present our work.

In the expression (34) appear two terms. The first one (35)
is proportional to the density N and it increases with the
coupling constant. The second term (36) is proportional to
N3, it describes the non-linearity effect due to the interac-
tion between quasiparticles, this negative term causes the
decreasing of the widths for high density.

4 Applications to the neutral helium

We have applied our model to three experiments of helium
lines and compared with Griem theory [1].
– Experiment of Gauthier et al. [16] which report mea-

surements of Stark profiles of the HeI 21P−31D transi-
tion at 6678 Å (Fig. 1). Line shape have been measured
at densities in the range of N = 0.1 to 2 × 1024 m−3

and temperature of 1.16 to 2.32 × 104 K which yield
for the non ideality factor 0.081 ≤ Γ ≤ 0.096.

– Experiment of El Bezzari [17] which report measure-
ments of Stark profiles of the same 6678 Å line (Fig. 2).
Line shape have been measured at densities in the
range of N = 0.3 to 1.7 × 1024 m−3 and tempera-
ture of 2 to 3 × 104 K which yield for the non ideality
factor Γ to be close to 0.1.

– Experiment of Büscher et al. [18] which report mea-
surements of Stark profiles of the HeI 23P−33D transi-
tion at 5876 Å (Fig. 3). Line shape have been measured
at densities in the range of N = 0.5 to 2.5× 1024 m−3

and temperature of 4.64 to 6.38 × 104 K which yield
for the non ideality factor 0.037 ≤ Γ ≤ 0.045.

Our model gives a good fitting to experiments values. Ta-
ble 1 gives the γ1 and γ2 values for the different experi-
ments where N is in 1024 m−3 and w in nm.

The values of the non linear interaction constants
are in the three experiments very small, which confirm
our proposal about the weakly interactions of the quasi-
particles in the plasma. Our model follows the experimen-
tal values better then the Griem linear model.

Fig. 2. Stark width versus the electron density for the he-
lium line HeI 21P − 31D transition at 6678 Å. Experimental
data of Bezzari et al. [17]. The dashed line present the Griem
theory [1]. The solid curve present our work.

Fig. 3. Stark width versus the electron density for the he-
lium line HeI 23P − 33D transition at 5876 Å. Experimental
data of Büscher et al. [18]. The dashed line present the Griem
theory [1]. The solid curve present our work.

Table 1. γ1 and γ2 values for the different experiments where
N is in 1024 m−3 and w in nm.

Experiment γ1 γ2

Gauthier 3.51333 0.00399
El Bezzari 6.48037 0.28272
Büscher 3.29944 0.18039

5 Conclusion

In this work, we have elaborated a simplified quantum
formalism of a line profile in a weakly non ideal plasma,
that gives a Lorentzian profile with modified width, when
interactions between constituents of the plasma are very
weak.

This formalism allows to explain the variations of the
line widths with the density in a weakly non ideal plasma
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where we find a modification of the Lorentzian profile.
This modification is due to the interaction between quasi-
particles in non ideal plasma. We have applied this model
to three experiments where the authors found in the range
of high density, the width of spectral lines grows nonlin-
early.

The authors would like to acknowledge helpful discussions with
Professor Yves Vitel from the Laboratoire des Plasmas Denses,
Université Paris VI, France.
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Scripta 54, 608 (1996)
5. Yu.V. Ralchenko, H.R. Griem, I. Bray, J. Quant.

Spectrosc. Radiat. Transfer 81, 371 (2003)
6. H. Elabidi, N. Ben Nessib, S. Sahal-Bréchot, J. Phys. B:
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